NZAC00215 Dulux Acratex 968 Elastomeric 201 Matt

Introduction

| Part A | 194 Line |

Approval

Environmental Choice Certified, CONFORMS to AS/NZS4548.1, AS/NZS4548.2 : Long Life Coatings for Masonry

Description and Image

Dulux Acratex 968 Elastomeric 201 is an extremely weather resistant, highly flexible, water based acrylic coating, that is a technologically advanced version of an elastomeric membrane. It combines the protective performance of a membrane (water resistance, crack bridging, carbon dioxide diffusion) with the advantages of a decorative paint (ease of application, attractive finish, low roller splatter).

Features and Benefits

- 10 year conditional warranty
- High water tightness
- Water based
- Resist carbon dioxide
- High tensile strength
- Improved rheology
- Long term exterior durability
- Excellent water resistance and protection
- Easy, safe and economical cleanup
- Ideal repair coating for spalled concrete
- Excellent crack bridging ability.
- Low roller splatter

Uses

Dulux Acratex Elastomeric 201 can be used on new and previously painted masonry, concrete, stucco, bricks, block work, precast concrete, off form concrete, glass reinforced concrete, solid plaster, fibre cement sheeting & rendered polystyrene systems. NOTE: Do not use solvent based sealer on a polystyrene surface, use a water based primer. Not suitable for use on roofs.
System Performance Testing Data

<table>
<thead>
<tr>
<th>Test Result Name</th>
<th>Test Method</th>
<th>Unit of Measure</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Carbon Dioxide Diffusion | AS 4548.5 Appendix D | cm² per sec | 2.8 x 10⁻⁷ | Independently Tested
 | | | Diffusion resistance coefficient (u) = 585000
 | | | Equivalent thickness of Concrete (Sc) = 29cm
 | | | Equivalent air layer thickness (R) = 117m |
| Chloride Ion Diffusion | AS 4548.5 Appendix E | cm² per sec | 2.0 x 10⁻¹³ | Independently Tested
 | | | Independently Tested
 | | | Vapour Diffusion coefficient of film = 5.6x10⁻⁵cm²sec
 | | | Vapour resistance coefficient (u) = 4470
 | | | Permeance of film = 2.3x10⁻⁷g/Pa.m²
 | | | Equivalent air layer thickness (Sd) = 0.9 |
| Water Vapour | AS 4548.5 Appendix C | g/m²/24hr | 55.7 | Independently Tested
 | | | Vapour Diffusion coefficient of film = 5.6x10⁻⁵cm²sec
 | | | Vapour resistance coefficient (u) = 4470
 | | | Permeance of film = 2.3x10⁻⁷g/Pa.m²
 | | | Equivalent air layer thickness (Sd) = 0.9 |

| Water Transmission | AS 4548.5 Appendix C | g/m²/24hr/kPa | 10.6 | Independently Tested
 | | | Static Test
 | | | Test Speed = 0.5mm/min
 | | | Test Temp = 23±3 degrees |
| Crack Bridging Ability | AS 4548.5 Appendix F | x Film Build | 4.8 | Independently Tested
 | | | Static Test
 | | | Test Speed = 50mm/min |
| Tensile Strength | AS1145 | MPa | 5.1 | Independently Tested
 | | | Specimen type 2
 | | | Test speed 50mm/min |
| Elongation | AS 4548.1 | % | 280 | Specimen type 2
 | | | Test speed 50mm/min | | |
| Early Fire Hazard | AS 1530.3 | 0 (best) - 10/20 | see comments |
| Cyclone Testing | ASTM E514 | Class A-E | Class E (Highest) | No Water Penetration |

Performance Guide

<table>
<thead>
<tr>
<th>Salt</th>
<th>Heat Resistance Up to 90°C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Vapour Transmission</td>
<td>Solvent Resists alcohol and aliphatic hydrocarbons. Sensitive to other strong solvents.</td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Abrasion</td>
<td>Acid Slightly softens with dilute acids</td>
</tr>
<tr>
<td>Alkali</td>
<td>Slightly softens with dilute alkalis</td>
</tr>
</tbody>
</table>
Typical Properties

V.O.C. Content
60 g/L

Sizes
10 Litre

Application Methods
- Airless Spray
- Brush
- Roller

Specifications

<table>
<thead>
<tr>
<th>Solids by Volume</th>
<th>Min</th>
<th>Max</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>500</td>
<td>250</td>
</tr>
</tbody>
</table>

Wet Film Per Coat (microns)	250	500	250
Dry Film Per Coat (microns)	125	250	125
Theoretical Spread Rate (m²/L)	4	2	4

Drying Time

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 hours</td>
<td>Indefinite</td>
<td></td>
</tr>
</tbody>
</table>

Application Guide

Surface Preparation

All surfaces must be cured, clean, sound and free of all contaminants such as form oils, release agents and mortar splashes. Surface imperfections, misalignments and protrusions must be levelled, patched and completely flush to surrounding surfaces. Metal tie wires, etc on surface must be removed and treated against corrosion. Prime substrate with DULUX AcraPrimer 501/10 Green Render Sealer Primer or surfaces of powdery nature will require consolidation with DULUX Acratex AcraPrime 501/2. If using DULUX AcraPrime 501/10 Green Render Sealer, ensure alkaline surfaces have aged (minimum of 7 days curing, possibly longer depending on conditions). If using a different primer ensure alkaline surfaces have aged for 28 days minimum.

Application Procedure and Equipment

Brush, Roller or Airless Spray
Refer to the Dulux Acratex Application Manual for detailed instructions. Stir contents thoroughly before and during use with a broad flat stirrer using an upward lifting action.
When cutting in edges, brush and roll at the same time to avoid differences in gloss level.
Application on single areas should be completed uninterrupted.
All independent tests are available on request.
Using Safety Precautions
For detailed information refer to the product label and the current Material Safety Data Sheet available through DULUX NZ Sales and Customer Services.

Please refer to SDS Link. In case of emergency, please call 0800 220 770.

Precautions and Limitations

Note: This product cannot be used on roofs.
To ensure colour uniformity and for optimum performance, Dulux recommend a full coating system including a MEMBRANE top coat.
For ALL systems the Texture &/or Base Coat should be tinted in accordance with AcraTex Tint Guide to the specified top coat colour (or a colour as close as possible to the specified colour as product and tint rules allow). IMPORTANT:
Ensure that you have adequate tinted stock to complete the job in one application. All material must be thoroughly cross-mix to ensure tint uniformity.
It is recommended to hold a volume of finish material for future maintenance touch-ups

Practical spreading rates will vary from quoted theoretical figures depending on substrate porosity, surface roughness, overspray losses, application methods and environmental conditions (e.g. wind).

All preparation and painting must conform to AS/NZS2311: The Painting of Buildings
At Commencement of coating system application, to the substrate it shall be deemed that the Applicator has certified that the surface which the coating/s is to be applied to, is fit to receive the specified coating(s) system.

Do not apply paint if Relative Humidity is above 85% or temperature is within 3°C of Dew Point.
Do not apply if the surface temperature is greater than 40°C or below 10°C, or likely to fall below 10°C during the application or drying period.
Dry times apply to a single coat at recommended spread rate and at 25°C and 50% Relative Humidity
Allow longer times under cool, moist, or still conditions and or when applied at high film builds.
Protect from dew, rain and frost for 48 hours when apply at the recommended spread rate.
Avoid application in hot, windy conditions or on hot surfaces cool the surface by hosing with water and paint the cool damp surface.

Application techniques should be adjusted to achieve the recommended DFT and finishing standard.
To avoid “Picture Framing” of texture topcoats “wet on wet” cutting in & coating technique is recommended or apply multiple coats thinning the first coat.

When using Bright Reds, Oranges, Blues and Yellows or where very light (or dark) colours are applied over highly contrasting colours an extra coat maybe required.

The coastal area is considered a marine environment and as such salt potentially can shorten the life of the coating systems. Care needs to be taken to wash down all areas twice. Once to remove surface contaminants, and raise salts to the surface and then secondly to remove these salts. Due to the locality, weather conditions and lag time between applications of the coating system it may require the need to wash again, between coats.

When the Applicator is preparing the site sample for approval he should advise the Project Manager if the substrate condition is not of sufficient standard to produce the specified finish.

Where possible avoid dark colours - these will give raise to much higher surface temperature that may cause addition thermal stress and cooling demand to the building envelope and/or require extra engineering considerations (greater building costs).
A DULUX warranty can be provided on request, when the FULL AcraTex system including a membrane topcoat/s is applied by a DULUX AcraTex applicator, according to specification, & at the specified spreading rates, & to the surface preparation details described in the DULUX AcraTex Specification Manual.
The dynamics of the substrate is outside the control of Dulux AcraTex and as such joint deformation or cracking is excluded from warranty terms.

CEMENT RENDERS PRODUCE FINE CRACKS DURING DRYING AND CONTINUE TO CRACK & MOVE WITH VARIATIONS IN TEMPERATURE. FOR ENHANCED PERFORMANCE USE A HIGH BUILD ELASTOMERIC (FLEXIBLE) COATING.
DULUX RECOMMENDS THE USE OF DULUX ACRA SHIELD ADVANCE.

Fungi and Algae can exist on virtually any surface (even glass) provided the right conditions for growth are met.

Visible growth on painted surfaces is typically caused by contaminants present together with the presence of high enough levels of moisture to support growth. Agents in paints become ineffective where they cannot “touch” the growth source (e.g where growth emanates from deposits on the
Disclaimer

This Data Sheet is copyright to DuluxGroup (Australia) Pty Ltd and/or DuluxGroup (New Zealand) Pty Ltd (collectively, ‘Dulux’). It may not be varied or altered without the prior written consent of Dulux, and if it is, Dulux has no responsibility or liability for those variations.

Unless Dulux has provided you with a customised, project-specific specification, this Data Sheet does not represent that any particular product or product system will be suitable for your project.

Any information provided in this Data Sheet is given in good faith and is believed by Dulux to be correct at the time of publication. Products and coating systems can be expected to perform as indicated in this Data Sheet, provided the substrate is in good condition, the coatings are applied by a suitably experienced and skilled applicator, and the preparation, application and maintenance is followed strictly as set out in this Data Sheet, and as recommended on the applicable Safety Data Sheets for the relevant products, available from www.duspecplus.co.nz. Climatic conditions at application time can affect product suitability and performance.

The correct colour or colour match is the responsibility of the applicator. Colours will change over time and Dulux does not guarantee that the same colour newly mixed will match a colour applied earlier which has been subjected to weathering or other change elements. No product colour is guaranteed against colour change.

Where any liability of Dulux in respect of this Data Sheet cannot by law be excluded, Dulux’s liability is limited, as permitted by law and at Dulux’s option, to resupply of the relevant products or services or to reimbursing the cost of those products or services.

WHERE LEAD MAY BE PRESENT: The asset manager is responsible for verifying the presence of lead and determining whether to remove or encapsulate the lead. If lead is present, the work must be done in strict accordance with AS/ NZS 4361 Parts 1 and 2 and Worksafe Australia or New Zealand guidelines.